Test de Van der Waerden
Le test de Van der Waerden est un test statistique qui permet de déterminer si les fonctions de distribution de k populations sont égales. Il est nommé ainsi en l'honneur du mathématicien néerlandais Bartel Leendert van der Waerden.
Le test de Van der Waerden est un test statistique selon lequel fonctions de distribution de population sont égales. Le test de Van der Waerden convertit les rangs d'une analyse de variance unidirectionnelle standard de Kruskal-Wallis en quantiles de la distribution normale standard (détails donnés ci-dessous). Ceux-ci sont appelés scores normaux et le test est calculé à partir de ces scores normaux.
Notes et références
Tests de comparaison d'une seule variable |
|
||||||
---|---|---|---|---|---|---|---|
Tests de comparaison de deux variables |
|
||||||
Tests d'adéquation à une loi | |||||||
Tests d'appartenance à une famille de lois | |||||||
Autres tests | |||||||
Test statistique (74)
- Concordance de Kendall
- Test F
- Test de Fisher d'égalité de deux variances
- Test de Chow
- Test exact
- Test de Jarque-Bera
- Droite de Henry
- Test du χ² de Yates
- Test du χ²
- Test de Shapiro-Wilk
- Test de Wald
- Test du multiplicateur de Lagrange
- Test du χ² de Cochran-Mantel-Haenszel
- Test du rapport de vraisemblance
- Test t de Welch
- Vrai négatif
- Test GRIM
- Test de Breusch-Pagan
- Test de Goldfeld et Quandt
- ANOVA de Friedman
- Test Q
- Test Q de Ljung-Box
- Kappa de Cohen
- Test de Chauvenet
- Test ABX
- Test de Mantel
- Test des suites de Wald-Wolfowitz
- Test de Lilliefors
- Test de Kolmogorov-Smirnov
- Vrai positif
- Test de Banerji (statistiques)
- Test de White
- Test de Sargan
- Faux positif
- Test de Durbin-Watson
- Test de McNemar
- Test de Dickey-Fuller
- Hypothèse nulle
- Test de Mood
- Résultat nul
Dernière mise à jour du contenu le .
Droit d'auteur : le texte de l'article est disponible sous la licence CC BY-SA 3.0.
Les détails concernant les licences et crédits des images sont disponibles en cliquant sur l'image.
Les détails concernant les licences et crédits des images sont disponibles en cliquant sur l'image.
Le site Wikimonde est un agrégateur d'articles encyclopédiques, il n'est pas à l'origine du contenu des articles, ni des images.
Le contenu de cet article est une copie de l'article d'origine (//fr.wikipedia.org/wiki/Test_de_Van_der_Waerden) publié sur Wikipédia (wiki collaboratif publié sous licence libre).
Le contenu des articles n'est pas garanti.
Le texte des articles n'est pas modifié par Wikimonde. Des modifications mineures de mise en page et des liens internes (pour faciliter la navigation) peuvent être effectués automatiquement.
Le contenu des articles n'est pas garanti.
Le texte des articles n'est pas modifié par Wikimonde. Des modifications mineures de mise en page et des liens internes (pour faciliter la navigation) peuvent être effectués automatiquement.
Des crédits concernant les images peuvent être ajoutés automatiquement selon les informations fournis par le site d'origine.
Les images sont chargées depuis des sites externes, certaines peuvent ne pas s'afficher.
Les images sont chargées depuis des sites externes, certaines peuvent ne pas s'afficher.
Auteurs de cet article « Test de Van der Waerden » :
Bob08, ALDO CP, Huster, PAC2, Jevan, Vriniv, 1 utilisateur non enregistré.