Test de Dickey-Fuller
Type | |
---|---|
Nommé en référence à |
Le test de Dickey-Fuller ou test de racine unitaire de Dickey-Fuller est un test statistique qui vise à savoir si une série temporelle est stationnaire c'est-à-dire si ses propriétés statistiques (espérance, variance, auto-corrélation) varient ou pas dans le temps et si leur valeur est bien finie.
Conditions du test
Procédure du test
Autres tests de stationnarité
Il existe deux types de test de stationnarité différents : les tests de stationnarité comme le test KPSS pour lesquels l'hypothèse nulle est que la série est stationnaire et les tests de racine unitaire comme le test de Dickey-Fuller, le test augmenté de Dickey-Fuller ou encore le test de Phillips-Perron pour lesquels l'hypothèse nulle est que la série a été générée par un processus présentant une racine unitaire, et donc, qu'elle n'est pas stationnaire.