Arc tangente

(Redirigé depuis Arctangente)
Fonction arc tangente
Crédit image:
licence CC BY-SA 4.0 🛈
Représentation graphique de la fonction arc tangente.
Notation
Réciproque
sur
Dérivée
Primitives
Principales caractéristiques
Ensemble de définition
Ensemble image
Parité
impaire
Valeurs particulières
Valeur en zéro
0
Limite en +∞
Limite en −∞
Particularités
Asymptotes
en
en

En mathématiques, l’arc tangente d'un nombre réel est la valeur d'un angle orienté dont la tangente vaut ce nombre.

La fonction qui à tout nombre réel associe la valeur de son arc tangente en radians est la réciproque de la restriction de la fonction trigonométrique tangente à l'intervalle . La notation est arctan ou Arctan [2] (on trouve aussi Atan, arctg en notation française ; atan ou tan−1, en notation anglo-saxonne, cette dernière pouvant être confondue avec la notation de l'inverse (1/tan)).

Pour tout réel x :

.

Dans un repère cartésien orthonormé du plan, la courbe représentative de la fonction arc tangente est obtenue à partir de la courbe représentative de la restriction de la fonction tangente à l'intervalle par une réflexion d'axe la droite d'équation y = x.

Parité

La fonction arctan est impaire, c'est-à-dire que (pour tout réel x) .

Dérivée

Comme dérivée d'une fonction réciproque, arctan est dérivable et vérifie[3] : .

Développement en série de Taylor

Le développement en série de Taylor de la fonction arc tangente[4] est :

.

Cette série entière converge vers arctan quand |x| ≤ 1 et x ≠ ±i. La fonction arc tangente est cependant définie sur tout ℝ (et même — cf. § « Fonction réciproque » — sur un domaine du plan complexe contenant à la fois ℝ et le disque unité fermé privé des deux points ±i).

Voir aussi Fonction hypergéométrique#Cas particuliers.

La fonction arctan peut être utilisée pour calculer des approximations de π ; la formule la plus simple, appelée formule de Leibniz, est le cas x = 1 du développement en série ci-dessus :

.

Équation fonctionnelle

On peut déduire arctan(1/x) de arctan x et inversement, par les équations fonctionnelles suivantes :

 ;
.

Fonction réciproque

Par définition, la fonction arc tangente est la fonction réciproque de la restriction de la fonction tangente à l'intervalle  : .

Ainsi, pour tout réel x, tan(arctan x) = x. Mais l'équation arctan(tan y) = y n'est vérifiée que pour y compris entre et .

Dans le plan complexe, la fonction tangente est bijective de ]–π/2, π/2[+iℝ dans ℂ privé des deux demi-droites ]–∞, –1]i et [1, +∞[i de l'axe imaginaire pur, d'après son lien avec la fonction tangente hyperbolique et les propriétés de cette dernière. La définition ci-dessus de arctan s'étend donc en : .

Logarithme complexe

Par construction, la fonction arctangente est reliée à la fonction argument tangente hyperbolique et s'exprime donc, comme elle, par un logarithme complexe :

.

Intégration

Primitive

La primitive de la fonction arc tangente qui s'annule en 0 s'obtient grâce à une intégration par parties :

.

Utilisation de la fonction arc tangente

La fonction arc tangente joue un rôle important dans l'intégration des expressions de la forme

Si le discriminant D = b2 – 4ac est positif ou nul, l'intégration est possible en revenant à une fraction partielle. Si le discriminant est strictement négatif, on peut faire la substitution par

qui donne pour l'expression à intégrer

L'intégrale est alors

.

Formule remarquable

Si xy ≠ 1, alors[3] :

Autres utilisations

La forme en S de cette fonction fait qu'elle fait partie des fonctions dites sigmoïdes. Par rapport à la fonction logistique de Verhulst et la fonction erf, elle est celle qui est la plus lisse, c'est-à-dire celle qui est la plus longue à rejoindre ses asymptotes.

Notes et références

(de) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en allemand intitulé « Arkustangens und Arkuskotangens » (voir la liste des auteurs).
  1. Programme officiel de l'Éducation nationale (MPSI, 2013), p. 6.
  2. a et b Pour une démonstration, voir par exemple le chapitre « Fonction arctan » sur Wikiversité.
  3. Connue des anglophones sous le nom de « série de Gregory », elle avait en fait été déjà découverte par le mathématicien indien Madhava au XIVe siècle. Voir l'article Série de Madhava  pour plus de détails.

Voir aussi

Articles connexes

Lien externe

(en) Eric W. Weisstein, « Inverse Tangent », sur MathWorld