Théorème de de Gua

(Redirigé depuis Théorème de Gua)
Tétraèdre trirectangle en O.

En mathématiques, le théorème de de Gua est une extension du théorème de Pythagore à la géométrie dans l'espace. Il a été énoncé par René Descartes et Johann Faulhaber dès 1622. Jean-Paul de Gua de Malves le démontre en 1783 en utilisant les formules de Héron d'Alexandrie[1].

Énoncé

Soit OABC un tétraèdre trirectangle en O.

Le carré de l'aire de la face ABC est la somme des carrés des aires des trois autres faces.

Démonstration

Notons a, b, c les longueurs respectives des arêtes OA, OB, OC.

Soit (etc.) dans le repère avec (etc.) Utilisons alors le produit vectoriel et son interprétation en termes d'aire. Alors d'où la formule.

Extension

La formule s'étend aux dimensions supérieures[2], ce que remarque Descartes pour la dimension 4, dans ses notes[3] dès 1619-1623.

Références

  1. Histoire de l'Académie royale des sciences, (lire en ligne), p. 374 et suivantes.
  2. (en) J.-P. Quadrat, J. B. Lasserre et J.-B. Hiriart-Urruty, « Pythagoras' theorem for areas », American Mathematical Monthly, vol. 108, no 6,‎ , p. 549-551 (lire en ligne).
  3. Charles Adam et Paul Tannery, Œuvres complètes de Descartes (lire en ligne), p. 256 et suivantes.