Coquaternion
En mathématiques et en algèbre abstraite, un coquaternion est une idée mise en avant par James Cockle en 1849. Comme les quaternions de Hamilton inventés en 1843, ils forment un espace vectoriel réel à quatre dimensions muni d'une opération multiplicative. À la différence de l'algèbre des quaternions, les coquaternions peuvent avoir des diviseurs de zéro, des éléments idempotents ou nilpotents.
L'ensemble forme une base. Les produits de coquaternion de ces éléments sont
- .
Avec ces produits l'ensemble est isomorphe au groupe diédral d'un carré.
Un coquaternion
possède un conjugué
- et un module multiplicatif, qui se comporte en partie comme une norme (arithmétique) :
- .
Lorsque le module est non nul, alors q possède un inverse.
est l'ensemble des unités. L'ensemble P de tous les coquaternions forme un anneau (P, +, •) dont le groupe des unités est (U, •).
Soit
où u et v sont des nombres complexes ordinaires. Alors la matrice complexe
- ,
où et (conjugués complexes de u et v), représentent q dans l'anneau des matrices dans le sens que la multiplication des coquaternions se comporte de la même manière que la multiplication matricielle. Par exemple, le déterminant de cette matrice ; l'apparition de ce signe moins où se trouve un plus dans ℍ conduit au nom alternatif quaternion fendu pour un coquaternion, par analogie avec les complexes fendus. Historiquement, les coquaternions ont précédé l'algèbre des matrices de Cayley ; les coquaternions (dans le prolongement des quaternions et des tessarines) évoquent une algèbre linéaire plus large.
Représentation géométrique
Soit
- (ici est aussi fondamental que l'azimut)
- caténoïde
- hyperboloïde à deux nappes
Maintenant, il est facile de vérifier que
et que
- .
Ces égalités d'ensembles signifient que lorsque alors le plan
est un sous-anneau de P, c’est-à-dire isomorphe au plan des nombres complexes fendus lorsque v est dans I alors
est un sous-anneau planaire de P qui est isomorphe au plan complexe ordinaire C.
Pour chaque , c’est-à-dire que et sont nilpotents. Le plan est un sous-anneau de P qui est isomorphe aux nombres duaux. Puisque chaque coquaternion doit relier dans , un , ou un plan N, ces plans profilent P. Par exemple, la sphère unité
est formée des « cercles unités » dans les plans qui constituent P. Dans , c'est une hyperbole, dans N le cercle unité est une paire de droites parallèles, tandis que dans , c'est vraiment un cercle (bien qu'elle apparaisse elliptique en raison de la compression par v).
Orthogonalité plane
Lorsque le coquaternion , alors la partie réelle de q est w.
Définition : pour les coquaternions différents de zéro q et t, nous écrivons lorsque la partie réelle du produit est zéro.
- Pour chaque , si , alors signifie que les demi-droites de 0 à q et t sont perpendiculaires.
- Pour chaque , si , alors signifie que ces deux points sont hyperboliquement orthogonaux .
- Pour chaque et chaque , et satisfont .
- Si u est une unité dans l'anneau des coquaternions, alors implique .
- Preuve : découle de , un fait basé sur l'anti-commutativité des vecteurs.
Géométrie de la contre-sphère
Prenons où . Fixons theta () et supposons
- .
Puisque les points sur la contre-sphère doivent se trouver sur un contre-cercle dans un certain plan , m peut être écrit, pour un certain
- .
Soit l'angle entre les hyperboles de r jusqu'à p et m. Cet angle peut être vu, dans le plan tangent à la contre-sphère à r, par projection :
- .
Comme b peut devenir grand, tanh b est proche de un. Alors . Cet aspect de l'angle de parallélisme dans un méridien θ tend à faire voir la variété de la contre-sphère comme un espace métrique S1 × H2 où H2 est le plan hyperbolique.
Application à la cinématique
En utilisant les bases données ci-dessus, on peut montrer que l'application
est une rotation ordinaire ou hyperbolique suivant que
- , ou , .
Ces applications sont des projections dans la droite projective des coquaternions. La collection de ces applications produit une certaine relation avec le groupe de Lorentz puisqu'il est aussi composé des rotations ordinaires et hyperboliques. Parmi les particularités de cette approche par rapport à la cinématique relativiste, on trouve le profil anisotrope, comparé aux quaternions hyperboliques.
Le frein à l'usage des coquaternions pour les modèles cinématiques peut s'expliquer par la signature de l'espace-temps (2, 2) qui est présumé avoir comme signature (1, 3) ou (3, 1). Néanmoins, une cinématique relativiste plus claire apparait lorsqu'un point de la contre-sphère est utilisé pour représenter un référentiel galiléen. Si , alors, il existe un tel que , et un tel que . Alors, si et , l'ensemble est une base orthogonale issue de t, l'orthogonalité se poursuit à travers les applications des rotations ordinaires ou hyperboliques.
Histoire
Les coquaternions ont été d'abord identifiés et nommés dans le London-Edinburgh-Dublin Philosophical Magazine, series 3, volume 35, p. 434,5 en 1849 par James Cockle sous le titre "On Systems of Algebra involving more than one Imaginary" (Des systèmes d'algèbre impliquant plus qu'un imaginaire). Lors de la rencontre à Paris en 1900 du Congrès international des mathématiciens, Alexander Macfarlane appela l'algèbre, le système de quaternions exsphéricaux comme il en a décrit l'aspect. MacFarlane examina un élément différentiel de la sous-variété { : } (la contre-sphère).
La sphère elle-même a été traitée en allemand par Hans Beck en 1910 (Transactions of the American Mathematical Society, vol. 28 ; par exemple le groupe diédral apparaît à la page 419). En 1942 et 1947 sont parues deux mentions brèves sur la structure des coquaternions dans les Annals of Mathematics :
- A.A. Albert, « Quadratic Forms permitting Composition », vol. 43, p. 161-177
- V. Bargmann, « Representations of the Lorentz Group », vol. 48, p. 568-640
Références
Bibliographie
- Dorje C. Brody et Eva-Maria Graefe, « On complexified mechanics and coquaternions », Journal of Physics A: Mathematical and Theoretical, vol. 44, no 1, (DOI 10.1088/1751-8113/44/7/072001).
- Stefan Ivanov et Simeon Zamkovoy, « Parahermitian and paraquaternionic manifolds », Differential Geometry and its Applications, no 23, , p. 205-234 (MR 2158044, arXiv math.DG/0310415).
- Thomas Mohaupt, New developments in special geometry, (arXiv hep-th/0602171).
- M. Özdemir, « The roots of a split quaternion », Applied Mathematics Letters, vol. 22, , p. 258-63 (lire en ligne).
- M. Özdemir et A.A. Ergin, « Rotations with timelike quaternions in Minkowski 3-space », Journal of Geometry and Physics, no 56, , p. 322-36 (lire en ligne).
- Anatoliy Pogoruy et Ramon M Rodrigues-Dagnino, « Some algebraic and analytical properties of coquaternion algebra », Advances in Applied Clifford Algebras, (lire en ligne).