Les développements asymptotiques de Plancherel-Rotach sont des développements asymptotiques pour les polynômes orthogonaux . Ils portent le nom des mathématiciens suisses Michel Plancherel et Walter Rotach, qui les ont d'abord dérivés pour le polynôme d'Hermite . Les développements asymptotiques de cette forme pour les polynômes orthogonaux sont dits de type Plancherel-Rotach .
Le cas des polynôme de Laguerre généralisés vient du mathématicien suisse Egon Möcklin, qui a fait son doctorat sous Plancherel et George Pólya à l'ETH Zurich [ 1] .
Les expansions asymptotiques listés ici sont tirés de la référence standard pour les polynômes orthogonaux de Gábor Szegő [ 2] .
Polynôme d'Hermite
Soient
ϵ
{\displaystyle \epsilon }
et
ω
{\displaystyle \omega }
positifs et fixes, alors
pour
x
=
(
2
n
+
1
)
1
/
2
cos
φ
,
ϵ
≤
φ
≤
π
−
ϵ
{\displaystyle x=(2n+1)^{1/2}\cos \varphi ,\ \epsilon \leq \varphi \leq \pi -\epsilon }
e
−
x
2
/
2
H
n
(
x
)
=
2
n
/
2
+
1
/
4
(
n
!
)
1
/
2
(
π
n
)
−
1
/
4
(
sin
φ
)
−
1
/
2
{
sin
[
(
n
2
+
1
4
)
(
sin
2
φ
−
2
φ
)
+
3
π
4
]
+
O
(
n
−
1
)
}
{\displaystyle {\rm {e}}^{-x^{2}/2}H_{n}(x)=2^{n/2+1/4}(n!)^{1/2}(\pi n)^{-1/4}(\sin \varphi )^{-1/2}{\bigg \{}\sin \left[\left({\tfrac {n}{2}}+{\tfrac {1}{4}}\right)(\sin 2\varphi -2\varphi )+3{\tfrac {\pi }{4}}\right]+{\mathcal {O}}(n^{-1}){\bigg \}}}
pour
x
=
(
2
n
+
1
)
1
/
2
cosh
φ
,
ϵ
≤
φ
≤
ω
{\displaystyle x=(2n+1)^{1/2}\cosh \varphi ,\ \epsilon \leq \varphi \leq \omega }
e
−
x
2
/
2
H
n
(
x
)
=
2
n
/
2
−
3
/
4
(
n
!
)
1
/
2
(
π
n
)
−
1
/
4
(
sinh
φ
)
−
1
/
2
exp
[
(
n
2
+
1
4
)
(
2
φ
−
sinh
2
φ
)
]
{
1
+
O
(
n
−
1
)
}
{\displaystyle {\rm {e}}^{-x^{2}/2}H_{n}(x)=2^{n/2-3/4}(n!)^{1/2}(\pi n)^{-1/4}(\sinh \varphi )^{-1/2}\exp \left[\left({\tfrac {n}{2}}+{\tfrac {1}{4}}\right)(2\varphi -\sinh 2\varphi )\right]{\big \{}1+{\mathcal {O}}(n^{-1}){\big \}}}
pour
x
=
(
2
n
+
1
)
1
/
2
−
2
−
1
/
2
3
−
1
/
3
n
−
1
/
6
t
{\displaystyle x=(2n+1)^{1/2}-2^{-1/2}3^{-1/3}n^{-1/6}t}
,
t
{\displaystyle t}
complexe et borné
e
−
x
2
/
2
H
n
(
x
)
=
3
1
/
3
π
−
3
/
4
2
n
/
2
+
1
/
4
(
n
!
)
1
/
2
n
−
1
/
12
{
A
(
t
)
+
O
(
n
−
2
/
3
)
}
{\displaystyle {\rm {e}}^{-x^{2}/2}H_{n}(x)=3^{1/3}\pi ^{-3/4}2^{n/2+1/4}(n!)^{1/2}n^{-1/12}{\bigg \{}A(t)+{\mathcal {O}}\left(n^{-{2/3}}\right){\bigg \}}}
où
A
(
t
)
=
π
Ai
(
−
3
−
1
/
3
t
)
{\displaystyle A(t)=\pi \operatorname {Ai} (-3^{-1/3}t)}
et
Ai
{\displaystyle \operatorname {Ai} }
est la fonction d'Airy .
Polynôme de Laguerre
Soit
α
{\displaystyle \alpha }
arbitraire et réel,
ϵ
{\displaystyle \epsilon }
et
ω
{\displaystyle \omega }
positifs et fixes, alors
pour
x
=
(
4
n
+
2
α
+
2
)
cos
2
φ
,
ϵ
≤
φ
≤
π
2
−
ϵ
n
−
1
/
2
{\displaystyle x=(4n+2\alpha +2)\cos ^{2}\varphi ,\ \epsilon \leq \varphi \leq {\tfrac {\pi }{2}}-\epsilon n^{-1/2}}
e
−
x
/
2
L
n
(
α
)
(
x
)
=
(
−
1
)
n
(
π
sin
φ
)
−
1
/
2
x
−
α
/
2
−
1
/
4
n
α
/
2
−
1
/
4
⋅
{
sin
[
(
n
+
α
+
1
2
)
(
sin
2
φ
−
2
φ
)
+
3
π
/
4
]
+
(
n
x
)
−
1
/
2
O
(
1
)
}
{\displaystyle {\rm {e}}^{-x/2}L_{n}^{(\alpha )}(x)=(-1)^{n}(\pi \sin \varphi )^{-1/2}x^{-\alpha /2-1/4}n^{\alpha /2-1/4}\cdot {\big \{}\sin \left[\left(n+{\tfrac {\alpha +1}{2}}\right)(\sin 2\varphi -2\varphi )+3\pi /4\right]+(nx)^{-1/2}{\mathcal {O}}(1){\big \}}}
pour
x
=
(
4
n
+
2
α
+
2
)
cosh
2
φ
,
ϵ
≤
φ
≤
ω
{\displaystyle x=(4n+2\alpha +2)\cosh ^{2}\varphi ,\ \epsilon \leq \varphi \leq \omega }
e
−
x
/
2
L
n
(
α
)
(
x
)
=
1
2
(
−
1
)
n
(
π
sinh
φ
)
−
1
/
2
x
−
α
/
2
−
1
/
4
n
α
/
2
−
1
/
4
⋅
exp
[
(
n
+
α
+
1
2
)
(
2
φ
−
sinh
2
φ
)
]
{
1
+
O
(
n
−
1
)
}
{\displaystyle {\rm {e}}^{-x/2}L_{n}^{(\alpha )}(x)={\tfrac {1}{2}}(-1)^{n}(\pi \sinh \varphi )^{-1/2}x^{-\alpha /2-1/4}n^{\alpha /2-1/4}\cdot \exp \left[\left(n+{\tfrac {\alpha +1}{2}}\right)(2\varphi -\sinh 2\varphi )\right]\{1+{\mathcal {O}}\left(n^{-1}\right)\}}
pour
x
=
4
n
+
2
α
+
2
−
2
(
2
n
/
3
)
1
/
3
t
{\displaystyle x=4n+2\alpha +2-2(2n/3)^{1/3}t}
,
t
{\displaystyle t}
complexe et borné
e
−
x
/
2
L
n
(
α
)
(
x
)
=
(
−
1
)
n
π
−
1
2
−
α
−
1
/
3
3
1
/
3
n
−
1
/
3
{
A
(
t
)
+
O
(
n
−
2
/
3
)
}
{\displaystyle {\rm {e}}^{-x/2}L_{n}^{(\alpha )}(x)=(-1)^{n}\pi ^{-1}2^{-\alpha -1/3}3^{1/3}n^{-1/3}{\bigg \{}A(t)+{\mathcal {O}}\left(n^{-2/3}\right){\bigg \}}}
où
A
(
t
)
=
π
Ai
(
−
3
−
1
/
3
t
)
{\displaystyle A(t)=\pi \operatorname {Ai} (-3^{-1/3}t)}
et
Ai
{\displaystyle \operatorname {Ai} }
est la fonction d'Airy .
Notes et références
↑ Egon Möcklin, Asymptotische Entwicklungen der Laguerreschen Polynome , 1934 (DOI 10.3929/ethz-a-000092417 )
↑ G. Szegő , Orthogonal polynomials , Providence, Rhode Island, American Mathematical Society, 1975 , 4e éd. (ISBN 0-8218-1023-5) , p. 200–201
Bibliographie
(en) Thorsten Neuschel, « Plancherel-Rotach formulae for average characteristic polynomials of products of Ginibre random matrices and the Fuss-Catalan distribution », Random Matrices: Theory and Applications , vol. 3, no 1, 2014 (DOI 10.48550/arXiv.1311.0365 )
(en) Xiang-Sheng Wang, « Plancherel–Rotach asymptotics of second-order difference equations with linear coefficients », Journal of Approximation Theory , vol. 188, 2014 , p. 1--18 (DOI 10.1016/j.jat.2014.08.003 )