Trapézoèdre

Ensemble de trapezohèdres
Trapézoèdre décagonal.
Faces 2n cerfs-volants
Arêtes 4n
Sommets 2n+2
Configuration des faces V3.3.3.n
Groupe de symétrie Dnd
Polyèdre dual antiprisme
Propriétés convexe, de face uniforme

Le trapézoèdre ou antidiamant ou deltoèdre n-gonal est le polyèdre dual d'un antiprisme n-gonal régulier. Ses 2n faces sont des deltoïdes congrus (ou cerfs-volants). Les faces sont décalées symétriquement.

Le nom trapézoèdre est trompeur puisque les faces ne sont pas des trapèzes, mais le terme alternatif deltoèdre est quelquefois confondu avec le terme non relié deltaèdre.

La partie n-gonale du nom ne fait pas référence aux faces mais à l'arrangement des sommets autour d'un axe de symétrie. L'antiprisme dual n-gonal possède deux faces n-gonales.

Un trapézoèdre n-gonal peut être décomposé en deux pyramides n-gonales égales et un antiprisme n-gonal.

Dans les textes décrivant les habitus en minéralogie, le mot trapézoèdre est souvent utilisé pour faire référence au polyèdre connu sous le nom d'icositétraèdre trapézoïdal.

Formes

Trigonal trapezohedron.png Tetragonal trapezohedron.png Pentagonal trapezohedron.svg Hexagonal trapezohedron.png Octagonal trapezohedron.png Decagonal trapezohedron.png

  1. Le trapézoèdre trigonal - 6 faces (rhombiques) - dual : octaèdre
    • Un cube est un cas particulier de trapézoèdre trigonal dont les faces sont carrées.
    • Un trapézoèdre trigonal est un cas particulier de rhomboèdre avec des faces rhombiques congrues
  2. Le trapézoèdre tétragonal - 8 faces en cerf-volant - dual : antiprisme carré
  3. Le trapézoèdre pentagonal - 10 faces en cerf-volant - dual : antiprisme pentagonal
  4. Le trapézoèdre hexagonal - 12 faces en cerf-volant - dual : antiprisme hexagonal
  5. Le trapézoèdre heptagonal - 14 faces en cerf-volant - dual : antiprisme heptagonal
  6. Le trapézoèdre octagonal - 16 faces en cerf-volant - dual : antiprisme octagonal
  7. Le trapézoèdre ennéagonal - 18 faces en cerf-volant - dual : antiprisme ennéagonal
  8. Le trapézoèdre décagonal - 20 faces en cerf-volant - dual : antiprisme décagonal
  • ...Le trapézoèdre n-gonal - 2n faces en cerf-volant - dual : antiprisme n-gonal

Dans le cas du dual d'un antiprisme régulier triangulaire, les cerfs-volants sont rhombiques, par conséquent, ces trapézoèdres sont aussi des zonoèdres. Ils sont appelés rhomboèdre. Ce sont des cubes dimensionnés dans la direction d'une diagonale. Ce sont aussi des parallélépipèdes avec des faces rhombiques congrues.

Un cas particulier de rhomboèdre est celui dont les losanges qui forment les faces ont des angles de 60° et 120°. Il peut être décomposé en deux tétraèdres réguliers égaux et un octaèdre régulier. Puisque les parallélépipèdes peuvent remplir l'espace, comme peut le faire un combinaison d'un tétraèdre régulier et d'un octaèdre régulier.

Exemples

Symétrie

Le groupe de symétrie d'un trapézoèdre n-gonal est Dnd d'ordre 4n, excepté dans le cas d'un cube, qui possède un groupe de symétrie plus large Od d'ordre 48, qui a quatre versions de D3d comme sous-groupes.

Le groupe de rotation est Dn d'ordre 2n, excepté dans le cas d'un cube, qui possède le groupe de rotation plus large O d'ordre 24, qui a quatre versions de D3 comme sous-groupes.

Voir aussi

Liens externes