Gravity Recovery and Climate Experiment

GRACE et GRACE-FO
Satellite scientifique
Description de cette image, également commentée ci-après
Vue d'artiste
Données générales
Organisation Drapeau de l'Allemagne DLR, Drapeau des États-Unis NASA
Constructeur Drapeau de l'Allemagne Airbus Defense and Space Allemagne
Programme ESSP
Domaine Mesure du champ de gravité terrestre
Statut Achevée (GRACE)
Opérationnel (FO)
Autres noms Gravity Recovery And Climate Experiment
Lancement 17 mars 2002 (GRACE)
22 mai 2018 (FO)
Lanceur Rokot (GRACE)
Falcon 9 (FO)
Fin de mission octobre 2017 (GRACE)
Durée 5 ans (mission primaire)
Identifiant COSPAR 2002-012A
Caractéristiques techniques
Masse au lancement 487 kg x 2
Puissance électrique 210 watts
orbite polaire
Altitude 500 km
Inclinaison 89°
Site http://www.csr.utexas.edu/grace/

Gravity Recovery And Climate Experiment plus connue par son acronyme GRACE et GRACE-FO (GRACE Follow on) sont deux missions spatiales conjointe de la NASA et de l'agence spatiale allemande similaires lancées respectivement en mars 2002 et mai 2018. Toutes deux effectuent des mesures détaillées de la gravité terrestre. Les données recueillies permettent de connaitre la répartition détaillée des masses au sein de la planète et ses variations dans le temps. Pour y parvenir ces missions utilisent deux satellites travaillant en tandem. Les positions relatives des deux satellites et les variations de leurs orbites sont exploitées pour mesurer l'évolution du champ de gravité dans la région survolée. Ce type d'information joue un rôle important dans l'étude des océans, de la géologie et du climat de la Terre.

Contexte

GRACE est développé conjointement par le centre de recherche spatial de l'université de Texas à Austin, du Jet Propulsion Laboratory à Pasadena en Californie, l'agence spatiale allemande, le centre de recherche allemand pour les sciences de la Terre à Potsdam[1]. Le JPL est responsable de la mission dans son ensemble dans le cadre du programme ESSP de la NASA. Cette mission spatiale fait partie du programme Earth Observing System qui regroupe un ensemble de satellites de la NASA chargés de collecter des données sur de longues périodes sur la surface de la Terre, la biosphère, l'atmosphère terrestre et les océans de la Terre.

Objectifs

Différences de pression au fond des océans mesurées par GRACE

Les cartes générées mensuellement par GRACE sont 1000 fois plus précises que les cartes qui existaient auparavant ce qui permet d'améliorer la précision de nombreuses techniques utilisées par les océanographes, les hydrologues, les glaciologues, les géologues, les climatologues, et autres scientifiques observant les phénomènes naturels[2]. La mesure du champ de gravité de la Terre par GRACE permet ainsi aux scientifiques de mieux comprendre des processus naturels importants comme, exemples parmi d'autres, la diminution de l'épaisseur des inlandsis polaires, la circulation de l'eau dans les océans (circulation thermohaline) ou les grands bassins hydrographiques (répartition entre aquifères et système fluviatile, temps de transfert et écoulements), et les écoulements, lents du manteau terrestre (solide), plus rapides dans le noyau externe (liquide), dans l'intérieur de la Terre.

En océanologie, une des applications les plus importantes est la compréhension de la circulation océanique globale. Les « vallées » et les « collines » de la surface de l'océan, écarts de topographie entre la « surface réelle » de l'océan et le géoïde, sont produits d'une part par les courants marins, d'une autre part par les variations temporelles et géographiques de la pression atmosphérique et des champs de vents associés, et enfin par les variations locales du champ de gravité. GRACE permet de séparer ces diverses origines et de mieux mesurer les courants océaniques et leurs effets sur le climat. Les données de GRACE sont également importantes pour déterminer l'origine de l'élévation du niveau de la mer et dans quelle mesure celle-ci est due à la masse d'eau provenant de la fonte des glaciers ou à la dilatation thermique des eaux chaudes ou aux changements de salinité[3].

Principes de mesure

GRACE est la première mission dans l'histoire du vol spatial à ne pas utiliser les ondes électromagnétiques transmises depuis la surface de la Terre et/ou de l'atmosphère pour effectuer ses mesures. GRACE utilise à la place un système de mesure de distance reposant sur des émissions micro-ondes qui mesure les variations de vitesse et de distance entre deux satellites identiques volant sur la même orbite polaire à une distance de 220 km l'un de l'autre et à 500 km au-dessus du sol terrestre. Le système de mesure est si sensible qu'il peut détecter des changements de distance de 10 microns soit un dixième de l'épaisseur d'un cheveu humain sur une distance totale de 220 km[4]. Lorsque les deux satellites GRACE effectuent leurs 16 révolutions quotidiennes autour de la Terre, leur trajectoire est perturbée par les variations du champ gravitationnel terrestre. Lorsque le premier satellite passe au-dessus d'une région où la gravité est un petit peu plus importante, le satellite est attiré par l'anomalie du champ de gravité et la distance avec le satellite qui le suit est modifiée. Après avoir franchi l'anomalie, le premier satellite reprend sa vitesse normale tandis que les paramètres de la trajectoire du deuxième satellite sont à leur tour affectés. En mesurant de manière continue les modifications de distance entre les deux satellites et en combinant ces informations avec la position des satellites fournie par des récepteurs GPS, les scientifiques peuvent reconstituer une carte détaillée du champ de gravité terrestre.

Les deux satellites maintiennent en permanence une liaison montante et descendante entre eux. La mesure de distance est effectuée en comparant le décalage de fréquence au niveau de cette liaison. Pour compléter ces données, les vaisseaux mesurent leur propres mouvements en utilisant des accéléromètres. Toutes ces informations sont envoyées aux stations au sol. Pour fournir des points de référence et maintenir l'orientation des vaisseaux, ceux-ci utilisent des capteurs d'étoile des magnétomètres et des récepteurs GPS. Les satellites GRACE ont également des réflecteurs laser qui permettent de mesurer la distance depuis la station au sol par laser.

Schéma du satellite GRACE

Caractéristiques techniques

Plateforme

La mission utilise deux satellites exactement identiques. Chaque satellite a une section trapézoïdale et est long de 3,122 mètres pour une hauteur de 0,72 m. et une largueur à la base de 1,942 m et au sommet de 0,693 m. Chacun des satellites à une masse de 432 kg dont 34 kilogrammes de gaz utilisé pour la propulsion et 40 kg de charge utile. La structure est réalisée avec en polymère à renfort fibre de carbone caractérisé par un coefficient de dilatation thermique très faible qui garantit la qualité des mesures de distance entre satellite. Le satellite est stabilisé 3 axes : son orientation dans l'espace est maintenue fixe à l'aide de six capteurs solaires CESS (Coarse Earth Sun Sensor) montés sur chaque face du satellite. Ceux-ci qui permettent d'établir la direction du Soleil avec une précision de 3 à 6° et celle de la Terre avec une précision de 5 à 10 degrés, un magnétomètre Förster fixé sur une perche qui affine ces mesures. Le pointage de précision est effectué à l'aide du viseur d'étoiles SCA (Star Camera Assembly) dérivé de ASC (utilisé par le satellite Ørsted) et d'un récepteur GPS. Une centrale à inertie 3 axes vient compléter ces données. Les corrections d'orientation sont effectuées à l'aide de 3 magnéto-coupleurs et de 12 propulseurs à gaz froid (azote). Les faces supérieures et latérales du satellite sont recouvertes de cellules solaires qui fournissent 150 à 210 Watts d'énergie électrique dont 75 sont utilisés par la charge utile. Des batteries NiH d'une capacité de 16 Ah fournissent l'énergie lorsque le satellite est plongé dans l'ombre de la Terre. La durée de vie de la plateforme est de 5 ans. Environ 80% des composants électroniques sont des composants acquis dans le commerce[5].

Instruments

KBR

KBR (K/Ka-Band Ranging) est l'instrument principal du satellite. Son rôle est de mesurer la distance entre les deux satellites avec une précision de l'ordre du micron. Il repose sur l'analyse de la phase des signaux envoyés par les deux satellites en bande K et Ka. Chaque satellite analyse les signaux émis par l'autre satellite.

LRI (GRACE-FO seulement)

LRI (Laser Ranging Interferometer) est un instrument expérimental embarqué uniquement sur GRACE-FO et qui remplit le même objectif que KBR à savoir mesurer la distance entre les deux satellites. A cet effet il utilise un laser dont la lumière est analysée sur l'autre satellite.

Accéléromètre

L'accéléromètre SuperStar, dérivé de l'instrument STAR embarqué à bord de CHAMP mais avec une précision 10 fois supérieure), mesure l'accélération gravitationnelle due aux forces de trainée et à la pression de radiation (Soleil et Terre) et subie par le satellite. SuperStar est monté au centre de gravité du satellite.

Réflecteur laser

Le satellite embarque un rétroréflecteur laser LRA (Laser Corner-cube Reflector Assembly) qui illuminé par un laser pointé depuis le sol permet de mesurer l'altitude de l'orbite avec une précision de 1 à 2 centimètres.

Récepteur GPS

Le récepteur GPS est utilisé pour déterminer avec une très grande précision l'orbite suivi par le satellite et effectuer des mesures d'occultation radio. L'appareil utilisé pour GRACE-FO contrairement à celui de GRACE permet d'exploiter également les signaux des systèmes de navigation par satellites européen Galileo et russe GLONASS

Fournisseurs

Les satellites sont construits par Astrium Allemagne et utilisent sa plateforme "Flexbus". Les systèmes à fréquence micro-ondes et les algorithmes de contrôle et de détermination de l'orientation sont fournis par Space Systems/Loral. La caméra utilisée pour le capteur d'étoiles est fourni par l'université technique du Danemark. L'ordinateur et le récepteur GPS de haute précision sont fournis par le JPL à Pasadena. L'accéléromètre de haute précision utilisé pour isoler les effets de l'atmosphère et du vent solaire des variations gravitationnelles est fourni par l'ONERA.

Déroulement de la missions GRACE (2002-2017)

Les satellites GRACE sont placés en orbite le 17 mars 2002 par une fusée Rockot tirée depuis le Cosmodrome de Plessetsk en Russie fournie par la société Eurockot. Les deux satellites surnommés Tom et Jerry sont placés sur la même orbite polaire située à une altitude de 485 kilomètres et avec une inclinaison orbitale de 89°. L'étage supérieur du lanceur Briz-KM, libère un des deux satellites avec une vitesse légèrement supérieure (0,5 m/s) pour que ceux-ci soient séparés par une distance comprise entre 170 et 270 kilomètres. Par la suite les satellites utilisent leur propulsion à gaz froid pour maintenir leur distance respective dans cette fourchette de valeur. Il est prévu à l'époque que l'altitude de l'orbite s'abaisse graduellement à 300 km à l'issue de la mission primaire [5].

La phase de recette s'achève le 14 mai 2003. En octobre 2005, la NASA donne son accord pour l'extension de la mission jusqu'en 2009. En décembre 2005, la position respective des deux satellites est inversée pour préserver l'antenne cornet (bande Ka) du satellite de tête qui subit une érosion liée à l'impact des atomes d'oxygène présents dans l'atmosphère résiduelle. La NASA et la DLR décident en juin 2010 de prolonger la mission jusqu'à l'épuisement de ses ergols, événement qui devrait intervenir entre 2013 et 2015 en fonction de l'activité solaire, du degré de sollicitation des moteurs-fusées et de l'état des batteries. La dégradation de l'orbite est bien inférieure à celle prévue puisqu'en 2011 les satellites circulent encore à une altitude de 455 km. En septembre 2014, l'altitude est de 410 kilomètres décroit d'environ 49 mètres par jour. Chaque satellite dispose encore de 9 à 10 kilogrammes de gaz froid ce qui garantit leur fonctionnement au minimum jusqu'en 2017. La position respective des deux satellites est de nouveau inversée en juillet 2014. Courant 2016 les satellites GRACE commencent à voir leur capacité opérationnelle fortement réduite. La collecte des données est affectée par la perte de plusieurs éléments de batteries et d'un des deux accéléromètres. La NASA souhaite un recouvrement entre GRACE et son successeur GRACE-FO dont le lancement est prévu fin 2017. En octobre 2017 la dégradation de l'état des batteries d'un des deux satellites entraine la fin de la mission[5]. Les ergols restants sont utilisés pour accélérer la rentrée atmosphérique et la destruction des deux satellites qui intervient le 24 décembre 2017 pour GRACE-2 et le 10 mars 2018 pour GRACE-1[6],[7].

La suite de GRACE : la mission GRACE-FO (mai 2018-)

Les deux agences spatiales lancent fin 2012 le développement d'une deuxième série de satellites aux caractéristiques très proches des originaux pour poursuivre les mesures du champ de gravité de la Terre. Les caractéristiques des satellites sont quasiment identiques à celles de la mission précédente hormis un nouvel instrument constitué par un interféromètre laser expérimental utilisé pour mesurer la distance entre les deux satellites[8]. Le lancement prévu initialement en août 2017 est repoussé à plusieurs reprises à la suite de problèmes rencontrés sur le lanceur. Le lanceur Dnepr prévu initialement devient indisponible en 2016 puis le lanceur Falcon 9 sélectionné en remplacement est victime d'une explosion au sol en septembre 2016 qui repousse la date de lancement de plusieurs mois supplémentaires[9]. Les deux satellites GRACE-FO doivent décoller depuis la base de lancement de Vandenberg (Californie). La charge utile de la fusée Falcon 9 comprend également 5 satellites de télécommunications Iridium-NEXT[10]. GRACE-FO décolle de Vandenberg le 22 mai 2018 à 19h48 et est placé sur une orbite polaire à une altitude de 490 kilomètres avec une inclinaison orbitale de 89°[11].

Résultats

Carte des anomalies du champ de gravité construite à partir des données fournies par GRACE

Mission GRACE

Les résultats suivants ont été obtenues grâce aux données recueilles par GRACE[5] :

  • L'assèchement des aquifères dans certaines régions de la planète comme l'Inde, souvent lié aux pompages intensifs trop importants, a pu être mis en évidence.
  • La mission a permis de détecter les régions où l'assèchement des sols étaient susceptibles d'accroitre les phénomènes de sécheresse
  • GRACE a permis de chiffrer précisément le rythme de la fonte des glaces dans les régions polaires. Le Groenland perd en moyenne 280 gigatonnes de glace par an tandis que l'Antarctique en perd 120 gigatonnes,
  • Le rythme de l'élévation moyenne du niveau des océans est mesuré précisément grâce aux satellites franco-américains Jason. Les données de GRACE ont permis d'évaluer le rôle respectif des deux processus à l'origine de cette élévation : le réchauffement des eaux (des eaux plus chaudes occupent plus de volume) et les changements de la masse des eaux. Ainsi la baisse du niveau des océans de 2011 a pu être expliqué par des événements liés à La Niña : les eaux se sont évaporées et ont généré des précipitations intenses sur l'Australie, l'Amérique du sud et l'Asie.
  • En physique de la gravitation, les données obtenues avec GRACE ont permis de revoir l'analyse des résultats fournis par l'expérience LAGEOS destinée à mesurer l'effet Lense-Thirring
  • En géologie, en 2006, une équipe de chercheurs dirigée par Ralph von Frese et Laramie Potts ont découvert grâce aux données de GRACE, le cratère Wilkes Land de 480 km de diamètre situé sous les glaces de l'Antarctique, qui s'est sans doute formé il y a environ 250 Ma [12].
  • En hydrogéologie et en géodynamique, GRACE a été utilisé pour cartographier le cycle hydrologique du bassin amazonien, et la position ainsi que l'importance des rebonds post-glaciaires.
  • En sismo-tectonique, GRACE a permis également d'analyser les glissements tectoniques au sein de la croûte terrestre à la suite du séisme du 26 décembre 2004 dans l'océan Indien[13].
  • En océanologie encore, les scientifiques ont développé récemment une nouvelle manière de calculer la pression au fond des océans, une donnée aussi importante pour les océanographes que la pression atmosphérique pour les météorologues, en utilisant les données de GRACE[14].

Notes et références

  1. (en) « Grace Space Twins Set to Team Up to Track Earth's Water and Gravity », NASA/JPL
  2. (en) « New Gravity Mission on Track to Map Earth's Shifty Mass », NASA/JPL
  3. (en) « What's Up with Sea Level », NASA/JPL
  4. (en) « GRACE Launch Press Kit », NASA/JPL
  5. a, b, c et d (en) « GRACE », sur EO Portal, Agence spatiale européenne
  6. (en) Patrick Blau, « Re-Entry: GRACE-2 », sur Spaceflight101.com,
  7. (en) Patrick Blau, « Re-Entry: GRACE-1 », sur Spaceflight101.com,
  8. (en) « GRACE-FO », sur EO Portal, Agence spatiale européenne
  9. (en) Government Accountability Office, Report to Congressional Committees : NASA Assessments of Major Projects, GAO, , 127 p. (lire en ligne), p. 54
  10. (en) « Next-Generation GRACE Satellites Arrive at Launch Site », sur NASA GRACE-FO, NASA/JPL,
  11. (en) Stephen Clark, « Rideshare launch by SpaceX serves commercial and scientific customers », sur spaceflightnow.com,
  12. (en) « Big Bang in Antarctica--Killer Crater Found Under Ice », Ohio State University
  13. (en) « Before the ’04 Tsunami, an Earthquake So Violent It Even Shook Gravity », The New York Times
  14. (en) « Gravity data sheds new light on ocean, climate », NASA/JPL

Documents de références

Documents de la NASA
  • (en) NASA, GRACE-FO Launch Press Kit, NASA, , 38 p. (lire en ligne)
    Dossier de présentation à la presse de la mission GRACE-FO

Voir aussi

Articles connexes

  • CHAMP Mission spatiale allemande poursuivent les mêmes objectifs lancée en 2000
  • GOCE, satellite remplissant une mission identique lancé en 2009
  • GRAIL, mission remplissant un objectif identique, mais cette fois concernant la Lune, et en réutilisant la même technologie que GRACE. Lancement en 2011

Liens externes