Famille de planètes mineures

Principales familles de la ceinture d'astéroïdes mises en évidence à travers le demi-grand axe propre et l'inclinaison propre.

Une famille de planètes mineures, famille d'astéroïdes, famille de Hirayama, ou encore famille collisionnelle, est un ensemble de planètes mineures qui partagent des éléments orbitaux similaires (tels que le demi-grand axe, l'excentricité ou l'inclinaison orbitale) et qui sont supposés être des fragments de collisions passées entre astéroïdes.

Ces familles se rencontrent notamment au sein de la ceinture principale d'astéroïdes, ce qui explique que le terme famille d'astéroïdes soit le plus courant. Les découvertes de familles parmi les troyens de Jupiter et, en 2006, au sein de la ceinture de Kuiper conduisent progressivement à généraliser le concept à celui de famille de planètes mineures.

Cette notion de famille est à distinguer de celle de groupe. Il s'agit dans les deux cas d'ensembles de planètes mineures partageant des propriétés orbitales voisines mais les groupes découlent seulement de phénomènes dynamiques (et non de collisions) et jouent un rôle plus structurant dans la disposition des planètes mineures au sein du Système solaire.

Histoire

L'astronome japonais Kiyotsugu Hirayama (1874–1943) est le premier à théoriser la notion de famille. Son article fondateur Groups of asteroids probably of common origin, publié en 1918, met en évidence, parmi les 790 astéroïdes alors référencées, trois premières familles qu'il nomme d'après leurs membres de plus petit numéro : Coronis (13 membres identifiés), Éos (19) et Thémis (22)[1]. Il introduit le terme de famille et - sans la nommer - la notion d'éléments orbitaux propres qui lui permet de mettre en évidence l'origine commune des membres de chaque famille[1]. Il reconnait par la suite d'autres familles dont celles de Flore et de Maria[2].

Dirk Brouwer poursuit ces travaux dans les années 1950 et affine les méthodes statistiques d'identification des familles[2]. De nouvelles familles sont progressivement identifiées mais des divergences importantes existent entre astronomes, tant sur les critères à utiliser que sur la liste des familles à retenir. Dans les années 1980, le nombre de familles identifiées peut varier de 15 à 117 suivant les auteurs et le consensus ne concerne que les familles "classiques" identifiées par Hirayama[2].

L'étude des familles fait un bon dans les années 1990 et 2000 grâce à l'augmentation rapide du nombre de planètes mineures référencées et, parallèlement, de la puissance de traitements statistiques, mais aussi et surtout grâce l'apparition progressive d'un consensus sur des méthodes d'identification plus rigoureuses (HCM, WAM, D-criterion...)[2]. Une étude publiée en 1995 et basée sur un échantillon d'environ 12 500 astéroïdes identifie 26 familles bien caractérisées[2].

Généralités

Terminologie

La notion de famille est la notion générique. Les petites familles sont souvent désignées par le terme anglais de cluster (ou grappe en français). Le terme paire est utilisé dans le cas extrême d'un ensemble réduit à seulement deux objets gravitant conjointement. Certains astronomes ont proposé d'autres termes (clan, tribu, touffe...) pour décrire la diversité des situations (familles plus ou moins nettes, plus ou ou moins isolées...) mais leur usage reste peu fréquent.

Dénomination

Plusieurs usages cohabitent. L'usage le plus fréquent a été de désigner les familles (de même d'ailleurs que les groupes) par le nom de leurs membres de plus petit numéro. Un autre usage est de privilégier le nom du plus grand membre, ce qui est cohérent avec le fait que le plus grand membre est souvent considéré comme le "membre parent".

Ces deux usages expliquent en partie pourquoi de nombreuses familles sont désignées par des noms différents suivant les époques ou suivant les auteurs, au fur et à mesure du raffinement des méthodes d'études : découverte d'un nouveau membre plus grand, inclusion d'un nouveau membre de plus petit numéro, exclusion du membre ayant initialement donné son nom à la famille, etc.

Les astronomes David Nesvorny, Miroslav Broz et Valerio Carruba ont proposé en 2015 un système visant à fixer une dénomination stable et partagée aux familles les mieux caractérisées. Ce système repose sur l'attribution d'un numéro à 3 chiffres appelé Family Identifier Number ou FIN. Le premier chiffre indique la zone du système solaire concernée :

  • 0 : groupes de Hungaria, groupe de Hilda ou troyens de Jupiter
  • 4 et 7 : partie intérieure de la ceinture principale (2,0 < a < 2,5 ua) ; 4 pour i < 17,5° et 7 pour i > 17,5°
  • 5 et 8 : partie centrale de la ceinture principale (2,5 < a < 2,82 ua) ; 5 pour i < 17,5° et 8 pour i > 17,5°
  • 6 et 9 : partie extérieure de la ceinture principale (en incluant groupe de Cybèle) (2,82 < a < 3,7 ua) ; 6 pour i < 17,5° et 9 pour i > 17,5°

Ce système est depuis repris par d'autres astronomes.

Nombre de familles

Le dénombrement exact des familles est par nature impossible. Leur caractérisation par des méthodes statistiques génère de nombreux cas limites. Par ailleurs de nouvelles familles sont régulièrement proposées et font l'objet de débats avant leur acceptation ou réfutation. Certaines peuvent rester longtemps au statut d'hypothèse.

Des études de synthèse sont régulièrement publiées et permettent d'affiner progressivement la liste des familles les mieux établies. L'une d'elles, publiée en 2015 par D. Nesvorny, M. Broz et V. Carruba[3], recense 122 familles auxquelles ont peut ajouter la famille d'Eurêka et la famille d'Hauméa, non traitées dans le cadre de l'étude. Elle propose par ailleurs une liste additionnelle de 19 familles candidates.

Origine et dynamique des familles

Origine des familles

Les familles sont interprétées comme résultant de collisions entre astéroïdes. Cette interprétation est proposée dès les travaux fondateurs de K. Hirayama dans les années 1920 et s'est progressivement affirmée. Dans la plupart des cas, la collision est supposée avoir entraîné la destruction des deux corps parents. Dans quelques cas, au contraire, la collision est interprétée comme un impact de cratérisation. C'est par exemple le cas pour les familles de Vesta (hypothèse d'un lien avec le cratère de Rheasilvia sur (4) Vesta[3]), Juno[3], Pallas, Hygie ou Massilia. On parle parfois dans ce cas de famille de cratérisation (cratering familly en anglais).

L'origine collisionnelle explique que, dans la grande majorité des cas, les membres d'une famille possèdent une homogénéité de composition (supposée à travers les propriétés spectrales). Cet aspect est utilisé, en complément des éléments orbitaux propres, pour affiner l'identification des familles et pour repérer les éventuels intrus ne faisant pas partie d'une famille. Les cas de cratérisation de gros corps différenciés peuvent toutefois faire exception.

Les très petites familles, en particulier celles isolées comme la famille d'Eurêka au sein des troyens de Mars, ont conduit à envisager d'autres scénarios, par exemple des ruptures successives d'un petit corps causées par l'effet YORP. L'hypothèse d'une collision reste toutefois le plus souvent privilégiée.

Dynamique et évolution des familles

Lors d'une collision, les vitesses relatives entre les fragments générés restent faibles comparées à la vitesse de déplacement des astéroïdes sur leurs orbites. C'est ce qui explique que les familles mettent plusieurs millions d'années pour se disperser et restent ainsi identifiables à travers l'étude des éléments orbitaux. Les petits fragments sont en général éjectés avec une plus grande vitesse et se dispersent donc plus rapidement.

L'influence gravitationnelle des planètes (en particulier de Jupiter dans le cas des familles de la ceinture principale) perturbent les orbites des fragments de manière différenciée et vient accélérer la dispersion. Le calcul des paramètres orbitaux propres permet de s'affranchir de ce phénomène et ainsi d'identifier plus facilement et de manière plus pertinente les familles, en particulier les plus anciennes.

D'autres effets non gravitationnels viennent perturber de manière différenciée les orbites des fragments, en particulier les effets Yarkovsky et YORP liés à la lumière du Soleil. Ces phénomènes affectent plus particulièrement les petits membres de la famille, venant encore renforcer leur dispersion déjà plus rapide. L'étude de la répartition des fragments selon leur taille permet ainsi d'estimer l'age des familles, c'est à dire le moment de la collision.

Eléments orbitaux propres

De manière stricte, l'adhésion d'un astéroïde à une famille donnée se fait par l'analyse de ses éléments orbitaux propres, plutôt que par ses éléments orbitaux osculateurs, ces derniers variant régulièrement sur des échelles de temps de plusieurs dizaines de milliers d'années. Les éléments orbitaux propres sont quant à eux des constantes liées au mouvement censées rester quasi constantes sur des périodes d'au moins plusieurs dizaines de millions d'années.

Comparaison des paramètres orbitaux osculateurs (à gauche) et des paramètres orbitaux propres (à droite) faisant apparaître les familles d'astéroïdes.

Familles au sein de la ceinture principale d'astéroïdes

Demi-grand axe et inclinaison propres des astéroïdes de la ceinture principale. On peut visualiser les lacunes de Kirkwood et les zones en découlant : zone I entre 2,0 et 2,5 ua ; zone II entre 2,5 et 2,8 ua ; zone III entre 2,8 et 3,3 ua ; la zone entre 3,3 et 3,7 ua correspond au groupe de Cybèle.

Disposition des familles au sein de la ceinture principale

La ceinture principale est classiquement divisée en plusieurs sous-groupes liés, notamment, aux lacunes de Kirkwood. Plusieurs découpages sont possibles. Nous retenons ici le découpage suivant :

  • périphérie interne = en amont du la lacune de Kirkwood 4:1 = groupe de Hungaria
  • ceinture proprement dite, elle même divisée :
    • zone I
    • zone II
    • zone III
  • périphérie externe = au-delà de la lacune de Kirkwood 2:1 = groupe de Cybèle et groupe de Hilda

La grande majorité des familles connues se concentrent dans les zones I, II et III de la ceinture principale. La plupart ont une inclinaison moyenne inférieure à 20°.

Les régions périphériques, beaucoup moins denses en astéroïdes, concentrent peu de familles. Ces régions sont traitées dans la section Familles au sein des groupes périphériques.

Importances des familles dans la description de la ceinture principale

Suivant les estimations, entre un quart et un tiers des astéroïdes de la ceinture principale sont connues comme appartenant à une famille.

Principales familles

Principales familles de la ceinture principale
Famille FIN Astéroïde référent Zone Nombre membres Type spectral Age estimé Remarques
Familles les mieux caractérisées (identifiées avant 1990)
Vesta 401 (4) Vesta Zone I ~ 15 300
Flore 402 (8) Flore Zone I ~ 13 800
Eunomie 502 (15) Eunomie Zone II ~ 5 700
Maria 506 (170) Maria Zone II ~ 2 900
Thémis 602 (24) Thémis Zone III ~ 4 800
Coronis 605 (158) Coronis Zone III ~ 5 900
Éos 606 (221) Éos Zone III ~ 9 800
Autres familles bien documentées
Phocée
Hygie

Familles au sein des groupes périphériques de la ceinture principale

Tableau récapitulatif des principales familles

Principales familles des périphéries interne et externe de la ceinture principale
Famille FIN Astéroïde référent Groupe Nombre membres Type spectral Age estimé Remarques
Périphérie interne de la ceinture principale
Eurêka (5261) Eurêka Troyens de Mars ~ 7
Hungaria 003 (434) Hungaria Groupe de Hungaria ~ 3 000 E
Périphérie externe de la ceinture principale
Sylvia 603 (87) Sylvia Groupe de Cybèle ~ 260 X
Ulla 903 (909) Ulla Groupe de Cybèle ~ 26 X
Huberta (260) Huberta Groupe de Cybèle
Hilda 001 (153) Hilda Groupe de Hilda ~ 410 C
Schubart 002 (1911) Schubart Groupe de Hilda ~ 350 C
Eurybates 005 (3548) Eurybates Troyens de Jupiter ~ 220
Ennomos 009 (4709) Ennomos Troyens de Jupiter ~ 30

Troyens de Mars

Groupes de Hungaria, de Cybèle et de Hilda

Troyens de Jupiter

L'étude des familles parmi les troyens de Jupiter est plus délicate qu'au sein de la ceinture d'astéroïdes du fait du confinement des troyens autour des points de Lagrange L4 ou L5 (la limitation de l'espace des phases conduit à une superposition des familles)[4]. Cependant, des études publiées en 1989 et 1993 recensent une douzaine de familles potentielles[4]. Les mieux cernées se limitent alors juste à des paires d'astéroïdes s'éloignant lentement l'un de l'autre. Des études plus récentes ont permis d'affiner la connaissance de ces familles. La famille d'Eurybate (environ 200 membres) et la famille d'Ennomos (environ 30 membres) compte parmi les mieux caractérisées[5],[3].

Familles au sein de la ceinture de Kuiper

Unique famille à ce jour identifiée au-delà de Neptune
Famille FIN Astéroïde référent Groupe Nombre membres Type spectral Age estimé Remarques
Hauméa (136108) Hauméa Ceinture de Kuiper

La famille de Hauméa est la première famille identifiée, en 2006, au sein de la ceinture de Kuiper[6],[7]. Elle reste en 2013 la seule famille clairement identifiée. Elle compte une dizaine de membres dont sans doute les deux petites lunes de Hauméa. Une étude publiée en 2008 estime plus probable que l'origine de cette famille soit un choc entre deux objets épars de forte excentricité plutôt qu'entre deux objets de la ceinture de Kuiper elle même[8].

Articles connexes

Notes et références

Notes

Références

  1. a et b (en) Kiyotsugu Hirayama, « Groups of asteroids probably of common origin », The Astronomical Journal, vol. 31, no 743,‎ , p. 185-188 (lire en ligne)
  2. a b c d et e (en) P. Bendjoya et V. Zappalà, « Asteroid Family Identification », dans Asteroids III, University of Arizona Press, , 613-618 p. (lire en ligne)
  3. a b c et d (en) David Nesvorny, Miroslav Broz et Valerio Carruba, « Identification and Dynamical Properties of Asteroid Families », arXiv, no 1502.01628v1,‎ (lire en ligne)
  4. a et b (en) David C. Jewitt, Scott Sheppard et Carolyn Porco, « Jupiter's Outer Satellites and Trojans », dans F. Bagenal, T.E. Dowling, W.B. McKinnon, Jupiter: The Planet, Satellites and Magnetosphere, Cambridge University Press (lire en ligne)
  5. (en) M. Broz et J. Rozehnal, « Eurybates — the only asteroid family among Trojans? », arXiv, no 1109:1109v1,‎ (lire en ligne)
  6. (en) Kristina Barkume, M.E. Brown et E.L. Schaller, « Discovery of a Collisional Family in the Kuiper Belt », Bulletin of the American Astronomical Society, vol. Vol. 38,‎ (résumé)
  7. (en) Michael E. Brown, Kristina M. Markume, Darin Ragozzine et Emily L. Schaller, « A collisional family of icy objects in the Kuiper belt », Nature, vol. 446, no 7133,‎ (résumé)
  8. (en) Harold F. Levison, Morbidelli Alessandro, David Vokrouhlicky et William Bottke, « On a Scattered-Disk Origin for the 2003 El61 Collisional Family - an Example of the Importance of Collisions on the Dynamics of Small Bodies », arXiv, no 0809.0553v1,‎ (lire en ligne)