Dyke

Bloc diagramme schématique, modélisant différents types d'intrusions :
2. et 4. Intrusion traversant les couches géologiques : dyke.
5. Intrusion respectant les lignes de forces de l'encaissant sans déformation : sill.
Trois dykes mis en évidence par l'érosion différentielle dans le Colorado
Dyke mis au jour par l’érosion différentielle, île de Mull, Écosse
Dyke dans des grès, Arizona
Dyke, Baranof Cross-Island Trail, Alaska
Dykes, Black Canyon, Gunnison National Park, Colorado

Un dyke, ou dike[a], est un filon de roches qui s'est injecté dans une fracturation de l'encaissant. De ce fait, un dyke recoupe les autres roches qu'il traverse (à la différence d'un sill). Le dyke est un phénomène intrusif dans une fissure d'ouverture transversale. Selon les principes de la stratigraphie, son âge est donc toujours plus jeune que celui des roches encaissantes.

Le terme provient de l'anglais dyke[1] (à rapprocher du néerlandais dijk, qui a donné le mot français « digue »[2]), se référant à la barre rocheuse constituée lorsque le dyke se trouve en position proche de la verticale. À la faveur d'une érosion différentielle, un dyke peut en effet se retrouver isolé de son encaissant et former un mur.

  • La plupart des dykes sont constitués de roches magmatiques, qui se sont injectées à l'état liquide.
  • Les dykes dits « neptuniens » (par opposition au plutonisme) ou « clastiques » sont en revanche composés de roches sédimentaires que l'on appelle alors des injectites (par exemple du sable).
  • Certains dykes sont constitués de roches métamorphiques. Il s'agit alors de dykes magmatiques ou neptuniens qui ont été affectés, en général longtemps après leur mise en place, par un métamorphisme régional (qui a affecté aussi l'encaissant, naturellement).

Caractéristiques géologiques

Dykes et sills formés dans des fractures se raccordent aux necks qui correspondent à des cheminées volcaniques. L'épaisseur d'un dyke peut varier de quelques centimètres à quelques dizaines de mètres tandis que son extension horizontale, à l'affleurement, peut atteindre plusieurs kilomètres. L'épaisseur du filon est généralement plus petite que les deux autres dimensions.

Dykes, sills et necks résistent en général mieux à l'érosion que des appareils volcaniques comme les cônes, surtout constitués de cendres ou de scories.

Mise en place des dykes

Les dykes peuvent apparaître en essaim, jusqu'à plusieurs centaines, mis en place quasi simultanément lors d'un même événement intrusif (par exemple, les dykes du Mackenzie dans les territoires du Nord-Ouest, Canada). Souvent sources d'éruptions fissurales car constituant des réseaux par lesquels le magma se déplace sur de grandes distances. La vitesse de mise en place peut atteindre un mètre par seconde. Cette rapidité de déplacement permet à la lave de ne pas se solidifier trop rapidement au contact des roches plus froides qu'elle traverse. Dans un dyke de 2 m de large, avec un magma avançant à 1 m/s, la température ne chute que de 20 °C en 10 km[3].

Un neck peut correspondre à un élargissement local d'un dyke selon un débit de lave augmenté. Autour d'un neck, la montée du magma produit une déformation des roches encaissantes en extension, des fissures apparaissent alors radialement et en anneaux et se remplissent de lave, ce qui donne un réseau de dykes radiaires ou annulaires.

Formes et exemples

Notes et références

Notes

  1. Dyke est l'orthographe britannique et dike l'orthographe américaine.

Références

Voir aussi

Bibliographie

  • Pascal Richet, Guide des volcans de France. Éd. Belin & BRGM, coll. Guides savants, 2003, 427 p.
  • (en) E. Rivalta, B. Taisne, A. P. Bunger et R. F. Katz, « A review of mechanical models of dike propagation: schools of thought, results and future directions », Tectonophysics, vol. 638,‎ , p. 1-42
  • (en) Meredith R. Townsend, David D. Pollard et Richard P. Smith, « Mechanical models for dikes: A third school of thought », Tectonophysics, vol. 703-704,‎ , p. 98-118

Articles connexes

Liens externes